Sparse Reduced Rank Huber Regression in High Dimensions
نویسندگان
چکیده
منابع مشابه
Sparse Reduced Rank Regression With Nonconvex Regularization
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...
متن کاملScalable Reduced-rank and Sparse Regression
Reduced-rank regression, i.e., multi-task regression subject to a low-rank constraint, is an effective approach to reduce the number of observations required for estimation consistency. However, it is still possible for the estimated singular vectors to be inconsistent in high dimensions as the number of predictors go to infinity with a faster rate than the number of available observations. Spa...
متن کاملBayesian sparse reduced rank multivariate regression
Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when combined with sparsity, can further lift dimension reduction, conduct variable selection, and facilit...
متن کاملRodeo: Sparse Nonparametric Regression in High Dimensions
We present a method for nonparametric regression that performs bandwidth selection and variable selection simultaneously. The approach is based on the technique of incrementally decreasing the bandwidth in directions where the gradient of the estimator with respect to bandwidth is large. When the unknown function satisfies a sparsity condition, our approach avoids the curse of dimensionality, a...
متن کاملNonparametric Reduced Rank Regression
We propose an approach to multivariate nonparametric regression that generalizes reduced rank regression for linear models. An additive model is estimated for each dimension of a q-dimensional response, with a shared p-dimensional predictor variable. To control the complexity of the model, we employ a functional form of the Ky-Fan or nuclear norm, resulting in a set of function estimates that h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2022
ISSN: ['0162-1459', '1537-274X', '2326-6228', '1522-5445']
DOI: https://doi.org/10.1080/01621459.2022.2050243